Communauté forumesque > Les Trolls

[Jeupâkon] Enigmes

<< < (42/55) > >>

Pom:

--- Citer ---le nombre de chapeau de chaque couleur est indéterminé.
--- Fin de citation ---


Pour N nains tu peux tous les sauver, à  condition qu'il y ait N/2 chapeaux de chaque couleur.

Maweth:
Les nains étant doués en maths (c'est bien connu) assignent à  chaque couleur une valeur : noir = 0 et blanc = 1 (par exemple). Le dernier nain (celui qui voit la couleur de tous les chapeaux de ses compagnons) calcule la somme si on remplaçait les couleurs par un chiffres.

Par exemple : Noir noir blanc noir noir blanc blanc blanc blanc noir blanc noir -> 0 + 0 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 0 + 1 + 0 = 6

Si la somme est paire, il dit noir (qui correspond à  0, chiffre pair), si la somme est impaire il dit blanc (qui correspond à  1, chiffre impaire).
Ce premier nain a une chance sur deux de survivre car il ne connait pas la couleur de son chapeau mais tous les autres sont sûr de réchapper au cyclone.

Le nain avant dernier, ayant entendu son camarade (les nains sont aussi communistes) dire la couleur blanche ou noire, sait comment trouver la couleur de son chapeau, il calcule la somme des chapeaux des nains qui le précède et compare avec la couleur donnée par le dernier nain.

Reprenons l'exemple : le dernier nain ayant calculé la somme des chapeaux (rappelez vous 6), dit "noir". Il a une chance sur de de vivre mais c'est l'idiot du village alors on s'en fout. Le suivant voit les chapeaux devant lui : Noir noir blanc noir noir blanc blanc blanc blanc noir blanc. Il fait donc le même petit calcul que son prédécesseur : 0 + 0 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 0 + 1 = 6. Ce nombre étant pair et sachant que son compagnon a dit noir (0 nombre pair donc la somme est paire) sait que son chapeau est noir.
Pour le 3ème nain c'est la même chose. Il compte les chapeaux devant lui : Noir noir blanc noir noir blanc blanc blanc blanc noir -> 0 + 0 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 0 = 5. La somme est impaire et son prédécesseur a donné la couleur correspondant à  un nombre pair donc il est blanc. Etc...

Ceci est valable quelque soit la race des personnes, le nombre de personnes, le nombre de couleurs... au final il y a toujours une personne qui a une chance sur 2 (ou le nombre de couleurs) et tous les autres qui sont sûr d'être sauvé. Bien sûr si c'est l'idiot du village qui parle en premier alors il y a de fortes chances qu'il se trompe et que tout le monde périsse dans d’atroce souffrances, niark niark niark...

M'Bowwarrior:
je veux bien l'explication pour 8 couleurs...

on m'a dit que ça fonctionnait mais...

Pom:
Le principe est le même, plus tu rajoutes de couleurs, plus t'as de nains qui vont devoir se sacrifier. Pour 8 chapeaux, les 7 premiers nains à  parler vont définir s'il y a un nombre pair ou impair de chapeau d'une couleur déterminée devant eux (répondre cette couleur si pair, et une couleur "joker" sinon) et permettre à  leur camarades de savoir leur couleur à  coup sur.
A partir du 8e, tu connais la parité des couleurs, si l'une d'elle n'est pas ce qu'elle devrait devant le nain courant, il porte cette couleur, sinon il porte la couleur "joker".

Pom:
j’enchaîne depuis les nains (parfois présenté avec des condamnés) qui est parfois donné en cours de math pour les généralisations pour mettre une petite démonstration assez connue :
a = b : (hypothèse)
a x b = b x b : (je multiplie chaque coté par "b")
ab = b² : (je réduis)
ab - a² = b² - a² : (je soustrais a² de chaque coté)
a ( b - a ) = ( b + a) ( b - a) : (je factorise)
a = b + a : (je simplifie par ( b - a))
a = a + a : (je remplace "b" par "a" car a=b)
a = 2 a : (je réduis)
1 = 2 : (je simplifie par "a")

J'imagine que vous serez d'accord pour dire que 1 n'est pas égal à  2 dans l'ensemble des réels, où est donc l'erreur ?

Navigation

[0] Index des messages

[#] Page suivante

[*] Page précédente

Utiliser la version classique